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Spatial integration of  strains using finite elements 

P E T E R  R O B E R T  C O B B O L D  a n d  M A R I E - N O I ~ L  P E R C E V A U L T  

Centre Armoricain d 'Etude Structurale des Socles (CNRS), Universit6 de Rennes,  
35042 Rennes Cedex, France 

(Received 7 July 1982; accepted in revised form 13 December 1982) 

Abst rac t - -The  finite element method for spatial integration of strains was conceived and then evolved as an 
intuitively reasonable means of calculating the pretectonic shape of a region. Here we show that the technique is 
basically an improved Euler method for integrating differential equations, and that unstrained elements 
(parallelepipeds) should therefore be fitted together so that face centres of adjoining elements coincide; or where 
this is not possible, the interracial distances should be minimized. Minimization yields the translation and rotation 
an element  must undergo in order  to fit well into the hole enclosed by neighbouring elements. Techniques are 
described for fitting of an array of elements by computer. A fastpacking routine gives a good but approximate 
result; whereas a slower but more rigorous procedure enables the result to be improved. Finally, a short 
discussion of errors is given. 

INTRODUCTION 

As STRAIN data measured across tectonic structures 
become more abundant, there is growing interest in 
using them to calculate pretectonic shapes. This can be 
done by spatially integrating the strains to obtain the 
deformation field. Thus, Ramsay & Graham (1970) 
showed that the amount of simple shear can be 
integrated across a shear zone to yield the total shear 
displacement. Similarly Hossack (1978) suggested that 
stretch can be integrated along a strain trajectory to 
yield the original length of that line. 

For general plane strain fields, Oertel (1974) intro- 
duced the practical idea of triangular domains within 
each of which strain is homogeneous. The idea was 
further explored by Schwerdtner (1977), who used 
square domains and showed that, after unstraining, the 
resulting parallelograms must be translated and rotated 
before they will fit together without large gaps and 
overlaps. The fitting procedure was done by hand, using 
pieces of paper for unstrained domains and pins to fix 
them into position. 

Cobbold (1979) observed that such domains were 
equivalent to finite elements, as used in mechanical 
problems, and introduced a numerical procedure for 
minimizing gaps and overlaps between planar elements, 
so enabling them to be fitted more efficiently and more 
objectively. At that time, the use of rectangular elements 
parallel to strain trajectories was advocated, as a means 
of simplifying the mathematics; but recent developments 
indicate that the basic mathematics can be presented in a 
simple form, independent of the choice of element 
shape, and valid for three-dimensional situations, as 
well as two-dimensional ones. 

The object of the present paper is to justify the use of 
finite elements on mathematical grounds. This leads to 
ideas about how elements should fit together and to a 
general method for minimizing gaps and overlaps. 
Finally, there is a short discussion of errors. 

MATHEMATICAL BASIS FOR USING FINITE 
ELEMENTS 

The mathematical problem 

If the Cartesian coordinates of a material point are Z 
for the undeformed state and z for the deformed state, 
then the deformation (TruesdeU & Toupin 1960, p. 243) 
is represented by the transformation 

z = z ( Z ) ,  (1) 

where the bold-face characters indicate vector or tensor 
quantities. 

Similarly, the inverse, 

z : Z (z ) ,  (2)  

will be called here the reverse deformation. The 
mathematical problem is to obtain (1) and (2), given 
other information. Suppose, first of all, that at each 
point in the deformed state, z, we are given the reverse 
deformation gradients, that is, the nine Cartesian com- 
ponents, 

3Z,_ Ztj ,  ( l , j  = 1 , 2 , 3 )  (3) 
azj 

as functions of position, z. Equations (3) are then nine 
partial differential equations in three unknowns, the Zt. 
By integrating them, we can in theory, obtain (1) and (2) 
and so solve the problem; to be integrable, however, the 
reverse deformation gradients must satisfy six conditions 
of compatibility, 

Oz--~ \ Ozj] ~zj \OzkJ (4) 

otherwise the answer will not be unique. 
In real geological problems, there is no guarantee that 

data will be free from errors and that the compatibility 
conditions, (4), will be perfectly satisfied. What is 
required, therefore, is a flexible method of integration 
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that can overcome problems of incompatibility between 
the data. Simple numerical methods will be explored 
first, as they provide a mathematical basis for the use of 
finite elements. 

The Euler method and modified Euler method 

The Euler and modified Euler methods are well 
known as approximate numerical methods for solving 
ordinary differential equations, such as 

dy 
d x  - f ' ( x ) ,  (5) 

method, this will be so ify is a linear function of x, so that 
its gradient is constant across all step intervals, and the 
graph of y vs x is a straight line. Under these conditions, 
but only under these conditions, points on the Cauchy 
polygon also lie along the exact integral. For the mod- 
ified Euler method, an exact solution is obtained, not 
only for a linear function of x, but also for a quadratic 
function (Fig. lb). This illustrates the improvement 
provided by the modified Euler method; it will give the 
exact answer if the gradient, f '  (x), is a linear function of 
position and will give a very good answer for more 
complex functions. 

of which the integral is 

= I f ' (x)dx = f(x). (6) Y 

If we are given values o f f ( x )  for all values of x, then 
the simplest numerical method of integration is the 
Euler method. The range ofx values is divided into equal 
step intervals, Ax. The gradient f '(x) is taken to be 
constant at the beginning of each step interval and 
projected forward throughout that interval (Fig. la). By 
taking a number of successive forward steps, an approx- 
imate solution is built up and its graphical form is known 
as the Cauchy polygon. Although the Euler method is 
the simplest, it is not very accurate. 

The modified Euler method results in much greater 
accuracy at the expense of a very small modification. 
The range of x values is divided into equal step intervals, 
as before, but the gradient, f '  (x), is taken in the middle 
of a step interval and projected forwards and backwards 
through half a step interval (Fig. lb). The approximate 
solution is then built up by moving forwards or back- 
wards through a number of successive steps. 

In both methods of solution, the accuracy improves as 
the step interval decreases until, in the limit where the 
step interval vanishes, the exact answer is always 
obtained. For finite step intervals, however, we may ask 
if there are any particular functions (6) for which an 
exact integral is always obtained, no matter how large 
the step interval. The answer is yes. For the Euler 
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Fig. 1. Numerical  integration of an ordinary differential equation.  
Thin  curve represents  function y = x  2, which is exact integral of dyldx 
= 2x, with y = 0 when x = 0. (a) Euler  me thod  of integration, showing 
est imated values of  y (dots) and slope dy/dx (thick straight line 
segments ,  forming Cauchy polygon) at beginning of each step interval, 
Ax. (b) Modified Euler  method.  Slopes dy/dx (thick segments)  are 
projected forward and backward over half a step interval. Est imated 

values of  y (dots) fall exactly on curve y = x 2. 

THE FINITE ELEMENT M E T H O D  

Suppose now that we apply a modified Euler method 
to integrate the partial differential equations (3). By 
analogy with what is done for ordinary differential equa- 
tions, equal step intervals are taken in all three (or two) 
directions, z,, in the deformed state. This defines an 
array of finite elements which are, in fact, cubes (or 
squares, Fig. 2a). The reverse deformation gradients are 
taken at the centroid of each element and assumed 
constant within it. Thus, it is a simple matter to undeform 
each element, using the theory of homogeneous strain. 
On doing so, we find that the elements become paral- 
lelepipeds (or parallelograms, Fig. 2b) and that gaps and 
overlaps appear between them. To build up the solution 
along each of the directions z~, we bring the face centres 
of adjacent elements once again into coincidence by 
translating them rigidly (Fig. 2c). The new positions, Z~, 
of the element centroids represent the numerical solu- 
tion of the problem. 

By analogy with what happens for ordinary differen- 
tial equations, we might suspect that the finite element 
method, being a modified Euler method, gives the exact 
solution if (2) is a quadratic function. This is indeed so, 
as illustrated by the two-dimensional model (Fig. 3), 

Z1 = zl + 0.1z~ - 0 . 2 Z l Z  2 + 0.2z 2, 
Z2 = z2 --~ 0 . l z  2 n t- 0 . 3Z lZ  2 _ 0 . 1 z 2 ,  (7) 

which is isochoric (no volume change). Notice that all 
pairs of face centres can be brought simultaneously into 
coincidence, whereupon the element centroids (but no 
other points) are exact positions in the undeformed 
state. Notice, furthermore, that pairs of element corners 
are far from coincident: this is simply a result of the finite 
size of the elements and does not indicate errors in data 
or in the solution, as stated mistakenly in earlier publica- 
tions (Percevault & Cobbold 1982). 

Now suppose that the function (2) can be expressed as 
a power series with terms of higher order than 2. Even if 
the reverse deformation gradients are given exactly at 
the element centroids, can all pairs of face centres be 
made to coincide as in the quadratic model (Fig. 3)? The 
answer is no, because numerical errors can build up 
differently in different directions, leading to local incom- 
patibilities. Errors in the reverse deformation gradients 
may make this problem worse; or they may, by chance, 
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Fig. 2. Integration of reverse deformation gradients using finite elements. (a) Initial grid of square elements. (b) 
Undeformed elements,  in original positions. (c) Same undeformed elements,  in new positions such that face centres 

coincide. 

make it better; but in any case, it is necessary to relax the 
stringent requirement that pairs of face centres coincide 
absolutely. Instead it is reasonable to introduce a 
method of minimizing interracial distances (distances 
between pairs of face centres), as done in the following 
section. 

Before going on to this however, let us consider a 
problem, geologically more realistic, where the reverse 
deformation gradients are not known completely, but 
instead only the strains are known. This leaves the rigid 
rotations to be determined, as well as the translations. 
Fortunately, a rigid rotation does not change the shape 
of an element. Therefore, the same method of integra- 
tion can be applied, provided it includes a minimization 
of interracial distances. This is a great advantage of the 
finite element method. 

By considering the finite element method as equiva- 
lent to a modified Euler method of integration, it has 
been suggested that all elements in the deformed state 
should be identical cubes (or squares), so as to ensure 
equal and regular step intervals in all directions. This 
restriction is, in practice, not always necessary, nor does 
it always guarantee that errors will be minimal. Instead 
there is some justification for locally reducing element 
size where strain gradients are largest, and for making 
element boundaries coincide as much as possible with 
surfaces of discontinuity in the strain field (such as 
boundaries between layers of different rheological prop- 
erties). In practice, we advocate using roughly equant 
parallelepipeds and making up an array such that face 
centres of adjoining elements coincide. 

Fig. 3. Quadratic model of deformation,  showing new coordinates 
(Zi,  Z2), old coordinates (Zl, z~) now undeformed,  and undeformed 
elements positioned so that face centres coincide. Notice that element 

centroids fall on coordinate curves, zl, z2. 

FITTING OF FINITE ELEMENTS 

Deviation of an element from its hole 

A consequence of using elements of finite size and of 
errors in strain data is that, once strains have been 
removed, an element need not have the same shape as 
the hole enclosed by its immediately adjacent neigh- 
bours. We shall now define the deviation of an element 
from its hole and then minimize it to obtain the best fit. 
A brief mathematical discussion of this procedure was 
given by Cobbold (1979) for two-dimensional problems. 
Here we will give a more general three-dimensional 
analysis. 

Consider an element defined by points z on its bound- 
ary in the deformed state. In the undeformed state, the 
element is defined by boundary points Z; and the hole it 
occupies, by boundary points Z*. Furthermore, in an 
intermediate state, the boundary points are ¥ and Y* 
(Fig. 4). 

The deviation, 9 ,  of the element from its hole, in the 
intermediate state, is defined as 

= 1 I v *  - r l  2 = - r , )  2, ( 8 )  
n 1 
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Fig. 4. An element within its true hole (left) and its equivalent hole 
(right). Element (shaded parallelogram) has corner Y. Neighbouring 

element (shaded, shown in part) has corner ¥*. 

where n is the number  of boundary points considered 
and the bar indicates an arithmetic mean. A similar 
definition was used by Grioli (1940) for analysing the 
deviation of one deformation from another; but he 
considered all points on the boundary of a sphere and 
therefore used a volume integral instead of the summa- 
tion in (8). 

The deviation, 9 ,  is defined as a mean-square dis- 
tance and therefore can be minimized directly, as in any 
least-mean-square procedure.  

Minimization with respect to unknown translation 

Suppose that in passing from the intermediate to the 
undeformed state, the hole is rigid and stationary, 
whereas the element undergoes a rigid translation only. 
This is expressed mathematically as 

Y* = Z*, 
Y = Z + B, (9) 

where B is a translation vector. Substitution of (9) into 
(8) yields 

= ( I  T - - g  l - B I )  2. (10) 

To minimize (10), differentiate with respect to the 
unknown translation and set the result equal to zero: 

0 9  
- 2(Z~ - Z I - B , )  = O. i l l )  

OB, 

As B is assumed constant over the element,  (11) can be 
written 

m 
BI = Z'~ - Z,.  (12) 

Here  Z/ is the vector mean of points around the 
element and Z~ the vector mean of points around the 
hole. To minimize the deviation, 9 ,  the element must 
be translated until these vector means coincide. A simi- 
lar result, in less general form, was given by Etcbecopar  
(1974). 

Minimization with respect to unknown rotation 

Suppose that ~ has already been minimized with 

respect to element translation so that Y~ = YI. Clearly 
a rigid rotation about this vector mean will not change its 
position, so that previous results will be conserved. To 
simplify the mathematics write, for example, 

p 

oY* = Y I -  Yt, (13) 

where oYi is the deviation of Yt from the mean value, Y/. 

A rigid rotation of the element about Y1 and within a 
stationary rigid hole is expressed as 

0Y~ = 0Z~, 
oYI = RIJoZj ,  (14) 

where R u is the rotation tensor. Substitution of (14) into 
(8) yields 

9 = ( o Z ~  - g l J o Z j )  2 = ( o Z ~ )  2 q -  ( o Z j )  2 

- 2R/joZ~oZj. (15) 

The first two terms on the right hand side of (15) are 
invariant with respect to rotation, whereas, in the third 

term, the quantity 0Z~ 0Zj is invariant. The deviation is a 

minimum when 0Z~ 0Zj is a maximum. Also, no rotation 

occurs if RIj  = 61j the unit tensor, whereupon oZ~oZa 

contracts to become its trace, 0Z~ 0Z/. But the trace of a 
tensor is a maximum if the latter is symmetric; therefore 
we conclude that 9 is a minimum with respect to 

rotation when o Z ~ oZj is symmetric. If it is not symmetric, 
it can be expressed as the product of symmetric and 
orthogonal components.  The orthogonal component  is 

the inverse of the rotation that renders oZ*t oZj symmetric 
and so minimizes 9 .  An efficient and reliable numerical 
method of decomposing an asymmetric matrix is given in 
the Appendix. 

Minimization with respect to unknown further strain and 
rotation 

Even if 9 has already been minimized with respect to 
element translation and rotation, it may be possible to 
reduce it further by allowing extra element strain and 
accompanying rotation. Whereas it may be unwise to 
use this technique to modify original strain data, it may 
be worthwhile as a means of estimating either errors in 
the data, or unknown dilations. 

If the element deforms within a rigid stationary hole, 
we have 

0Y~ = 0Z~, 
(16) 

oY~ = D H o Z J ,  

where DIj is a deformation gradient tensor for the extra 
strain and rotation. Substitution of (16) into (8) yields 

9 = (oZ* l  - D H o Z j )  2 (17) 

and minimization gives 

0 9  
- 2(0Z~ - D,KoZK)0Zj = 0, (18) 

ODH 

whence 

DtK(oZKoZJ) = oZ~ oZj. (19) 

This is a set of linear equations in the unknown DtK 
and can be solved by inverting the covariance matrix, 

0ZKoZj, and premultiplying by oZ~oZj. The method is 
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formally analogous to the fitting of a first order trend 
surface to values of oYt. 

If only a dilation is permitted, we put D m = A6m, 
where A is the dilation, and (19) becomes 

AZ~ = oZ~Z,. (20) 

The true hole and the equivalent hole 

Although an element need not have the same form as 
the true hole enclosed by immediately adjacent ele- 
ments, it is possible to define an equivalent hole whose 
average shape is of the same form as that of the element. 
Furthermore, if the element fits perfectly into the 
equivalent hole, it can be shown that the deviation is 
minimized. Thus, the equivalent hole is a useful graphi- 
cal aid for judging the compatibility of an element with 
its neighbours. 

If elements are cubic in the deformed state, they 
become parallelepipeds in the undeformed state, but the 
true holes are not parallelepipeds. For example, in the 
two-dimensional quadratic model (Fig. 3), the true holes 
are general quadrilaterals; in other examples, the true 
holes are more complex. Nevertheless we can define 
equivalent holes that are parallelepipeds (or parallelo- 
grams). One way of doing this is to consider boundary 
points that lie at the corners only of elements (Fig. 4). 
Thus, an element has 8 corners whereas its true hole has 
up to 24 corners (6 neighbouring elements contributing 4 
corners each). By taking these corners in triplets and 
calculating the vector mean of each triplet, we obtain a 
hole with 6 faces and eight corners (Fig. 4); then, by 
calculating the vector means of each face, we obtain 6 
face centres, defining a parallelepiped. This is the 
equivalent hole, into which an element is to fit. 

By simple algebra involving vector means, it can be 
shown that the deviation ~ is a minimum when a 
parallelepiped and its equivalent hole have exactly the 
same shape and dimensions, so that the interracial dis- 
tances are zero. Thus, in the quadratic model (Fig. 3), 
each element is an exact image of its equivalent hole, the 
interracial distances are zero, and the deviation, 9 ,  
calculated using corners, is not zero, but is a minimum. 

To summarize, compatibility is considered perfect 
when each element is an exact image of its equivalent 
hole. 

Numerical fitting 

In previous sections it has been shown how an element 
can be fitted into its hole so that the deviation of one 
from the other is a minimum. Calculation of the required 
translations and rotations is a simple matter for an 
automatic computer, especially one whose language is 
adapted to handling matrices. 

To pack together an array of elements, the fitting 
procedure is performed for the first element, all its 
neighbours being held fixed; then the procedure is 
repeated for the second element, all its neighbours, 
including the first element, being held fixed; and so on, 

until the last element has been fitted, thereby completing 
one cycle through the entire array. Next, another cycle is 
performed in the same way; and so on, for successive 
cycles, until further adjustments are negligible. 

This packing procedure has been found to converge in 
all examples (about 20) studied so far, but convergence 
can be slow. 

In some examples, instabilities have been observed, in 
which lines of overlapping elements buckle by rotation 
instead of extending uniformly by translation of indi- 
vidual elements; these instabilities disappear later, but 
hinder rapid convergence. In other examples, parts of 
the array become temporarily locked into metastable 
configurations. 

For these reasons, we have devised a less accurate but 
fast-packing procedure, suitable for the early stages of 
adjustment. The procedure is analogous to crystal 
growth. First, a nucleus is chosen; then, a first shell of 
elements is packed around the nucleus, each element 
being fitted into the space defined by at most two other 
elements already consolidated; and so on for successive 
shells, until all the elements are consolidated. The fast- 
packing procedure is used for one cycle only, yet it 
accomplishes most of the required translations and rota- 
tions. Further fine adjustments can then be 
accomplished using the more complete packing pro- 
cedure, described earlier. Computer programs for these 
procedures are being prepared for publication else- 
where. 

ERRORS 

Errors in a deformation field obtained by strain inte- 
gration may arise in the following ways. 

Integration errors 
These result from the integration technique and the 

finite size of the elements employed. Their magnitudes 
may be estimated roughly, using what is known about 
errors in the modified Euler method of solving ordinary 
differential equations. Here the errors are of the order 
of h 3, where h is the fractional step length. Thus the use 
of ten elements will lead to an error of about (0.1) 3 = 
0.001 or 0.1% in the length of a line. 

If integration proceeds in more than one direction, as 
in the finite element technique, errors in the three 
directions are not independent of one another, because 
of the compatibility conditions (4), approximated by the 
minimization criterion. Thus, there may be local 
increases or decreases in the error magnitudes estimated 
above. 

As in finite element solutions of mechanical problems, 
one way of assessing integration errors is to repeat an 
integration three or four times, using successively 
smaller element sizes, to see how much the answers 
differ. If the differences are negligible, it can be assumed 
that the elements are small enough and the answer 
acceptable. 
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So far, no tests of this kind have been attempted while 
integrating strains using finite elements. Clearly they are 
necessary, now that the technique is beginning to be 
used with some frequency. 

Data  errors  

If the data are natural strains, they will inevitably be 
subject to errors, as a result of (i) faulty measurement, 
(ii) inadequate strain gauges, (iii) unknown dilations 
and other reasons. 

If the errors are not too large and are randomly 
distributed in terms of spatial position and orientation, 
we might expect them to compensate for one another 
during the minimization procedure. As a simple illustra- 
tion, consider an array of identical plane elements in the 
undeformed state (Fig. 5a). If errors of + 10% in princi- 
pal strain values, but not principal orientations, are 
introduced (Fig. 5b), they compensate for one another 
almost completely during integration. Additional errors 
of + 10% in principal orientation are more serious (Fig. 
5c), but compensation still occurs. 

If errors are systematic, they will inevitably accumu- 
late during spatial integration and this must be taken 
into account; but integration may yet yield the basic 
pattern of the deformation field and hence may be worth 
performing. 

A measure of the magnitude of random errors may be 
gained by computing the total deviation using interracial 
distances (not intercorner distances, as mistakenly 
suggested by Percevault & Cobbold 1982). The smaller 
the deviation, the smaller the likelihood of random data 
errors. 

!LT-Lt-i 2L]_-iL-] 
a 

i-]-- F-i-i---'-T-7-i 
_ - _ _  

I ~ ~ , ":-4t 

b c 
Fig. 5. Effect of errors. (a) Array of square elements in undeformed 
state. No errors. (b) Errors of +10% in principal strain values. (c) 

Errors of _+ 10% in both principal values and orientations of strain. 

Systematic errors, in contrast, may have but a small 
effect on the total deviation. In particular, a homogene- 
ous dilation has no effect on element configuration: 
systematic volume change is therefore indetectable if 
only deviatoric strains are available as data. 

To conclude this section, further work is obviously 
required on the effects of errors and of unknown volume 
changes. 

CONCLUSIONS 

(1) The finite element technique for spatial integra- 
tion of strains is essentially equivalent to the modified 
Euler method for numerical integration of ordinary 
differential equations. 

(2) It is convenient for elements to be parallelepipeds 
or parallelograms, as equant as possible before each is 
unstrained. 

(3) Unstrained parallelepipeds should be fitted 
together by minimizing the distances between the face 
centres of adjoining elements. 

(4) A measure of misfit between an element and the 
hole enclosed by its neighbours is the deviation, 9 ,  
defined as the mean square distance between points 
lying on the element boundary and points lying on the 
hole boundary. 

(5) A criterion for best fitting an element in its hole is 
to minimize the deviation. This yields the unknown 
translation and rotation which the element must undergo 
to ensure a best fit. 

(6) Fitting of an array of elements is best performed 
by computer: each element is fitted in turn into the hole 
enclosed by stationary neighbours. A fast packing 
routine obtains a good but approximate result after only 
one cycle of fitting operations. Another more rigorous 
routine improves the result during several further cycles 
of operations. 
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APPENDIX 

Polar decomposi t ion o f  an asymmetric  matrix 

Given a matrix D, we wish to express it as the matrix product of a 
symmetric matrix, S, and an orthogonal matrix, O, as follows. 

O = O.S. (A1) 

Perhaps the most obvious way of obtaining such a decomposition is 
to note that if we form the symmetric matrix, C, given by 

C = D' .D, (A2) 

where the dash indicates a transpose, then S and C are related 
(Truesdell & Toupin 1960): 

S = C I/2, (A3) 

so that 

O = O "  C -1/2. (A4) 

The problem with this approach is that operation (4) involves (i) 
finding the proper numbers and proper vectors of C; (ii) taking the 
reciprocal square roots of the proper numbers of C to obtain the proper 
numbers of C - m ;  (iii) forming C -1/2 from its proper numbers and the 
same proper vectors as those of C. The operation is long and numeri- 
cally inconvenient, as proper  numbers may be difficult to extract with 
any accuracy, especially if one or more of them are close to zero. 

The following numerical method was used instead, because it was 
found to be rapid, accurate and unfailing. 

If we consider Cartesian components,  DIj, then the components D12 
and D2~ can be made equal by a suitable rotation, 03 about the 
Cartesian axis, Z3. The angle of rotation is given by 

tan 03 = (Dt2 - D21)/(Dll + D22) (A5) 

and the corresponding orthogonal matrix is 

Ei 0 01 Oiu = cos 03 sin 03 . (A6) 

- s i n  03 cos O31  

On multiplying D by O10, we obtain a new D, where D12 = D21, but 
where D23 ~ D32 and D3! ~ D13. 

Similarly, the components  D12 and D31 can now be made equal by a 
suitable rotation, 02, about axis Y2, the corresponding orthogonal 
matrix being O12 ). On multiplying D by O~2), we obtain Di3 = D31, but 
have D32 :k D23 and, once again, Dl~ :~ D2t. The difference between Dp_ 
and D2~ is, however,  not as great as before the operations started. 
Therefore if we apply a total rotation O '  = O1, ) . . . O~3)" O~2)" O~), 
with components about each of the three axes in turn, D becomes 
symmetric and O' is the inverse of O. 

In practice, symmetry of D was achieved to within two decimal 
places after about 50 rotations about each of the Cartesian axes. This 
operation required about 2 min on a Hewlett-Packard Model 45 
Calculator, programmed in the Basic language. 


